Thursday, 17 September 2015

Rochester Institute of Technology - Computing and Information Sciences Ph.D.

Computing and Information Sciences Ph.D.
Pengcheng Shi, Director
(585) 475-6147, pengcheng.shi@rit.edu


Program overview
The doctoral program in computing and information sciences is designed to produce independent scholars, well-prepared educators, and cutting-edge researchers poised to excel in their work in computing and interdisciplinary academic, industrial, or government environments. The degree highlights two of the most unique characteristics of the Golisano College: its breadth of program offerings and its scholarly focus on discovering solutions to real-world problems by balancing theory and practice.

The program focuses on the theoretical and practical aspects of cyberinfrastructure as applied to specific problems across multiple domains. It is a blend of intra-disciplinary computing knowledge areas and inter-disciplinary domain areas.

Cyberinfrastructure

Cyberinfrastructure (CI) is the comprehensive integration of hardware, data, networks, and digitally-enabled sensors to provide secure, efficient, reliable, accessible, usable, and interoperable suites of software and middleware services and tools. The doctorate program plays a leadership role in CI research by providing human-centered tools for the science and engineering communities. These tools and services focus on such areas as high performance computing, data analysis and visualization, cyber-services and virtual environments, and learning and knowledge management.

Intra-disciplinary knowledge


There are three intra-disciplinary computing knowledge areas: infrastructure, interaction, and informatics.

Infrastructure comprises aspects related to hardware, software (both system software and applications), COMMUNICATIONStechnology, and their integration with computing systems through applications. The focus is on the best organization of these elements to provide 

optimal architectural solutions. On the hardware side it includes system-level design (e.g., for system-on-a-chip solutions) and their building block components. On the software side it covers all aspects of systems and applications software development, including specification and design languages and standards; validation and prototyping, and multi-dimensional Quality-of-Service management; software product lines, model-driven architectures, component-based development, and domain-specific languages; and product estimation, tracking, and oversight. The communications subtopic includes sensor networks and protocols; active, wireless, mobile, configurable, and high-speed networks; and network security and privacy, quality of service, reliability, service discovery, and integration and inter-networking across heterogeneous networks. At the system level there are issues related to conformance and certification; system dependability, fault tolerance, verifiable adaptability, and reconfigurable systems; real-time, self adaptive, self-organizing, autonomic systems. Some of the specialties available in this area are networks and security, digital systems and VLSI, software design and productivity, and systems software.

Interaction refers to topics related to the combined action of two or more entities (human or computational) that affect one another and work together when facilitated by technology. It encompasses several subtopics relating to how people and technology interact and interface. Several common threads weave through all of these areas, many of which rely heavily and build upon foundations in the social and behavioral sciences with an emphasis on understanding human and social/organizational phenomena. To some extent, these fields follow an engineering approach to the design of interactions in which solutions are based on rules and principles derived from research and practice, but require analyses that go beyond the analytical approach. From this perspective, solutions can be measured and evaluated against goals and intended outcomes. However, while efficiency and effectiveness are often the watchwords of these fields in practice, this is also where science meets art in computing. Creative design and sensitivity to human needs and aesthetics are critical. Some of the specialties available in this area are human-computer interaction, computer-based instructional systems, and access technologies.

No comments:
Write comments

Labels